Dear Bank Aspirants practice Quant Questions for upcoming SBI and other exams. Today's Topic is Time and Distance, very important for SBI clerk point of view.
1). 19.9 × 16.1 × 17.2 =?
a) 5869.01
b) 3021.861
c) 5510.708
d) 4862.961
e) None of these
2). 14 (1/11) + 16 (3/11) + 14 (4/121) + 15 (3/11) =?
a) 59 (54/121)
b) 39 (23/121)
c) 61 (82/99)
d) 107 (59/121)
e) 59 (81/121)
3). 16.5% of 300 + 70.5% of 1400 – 10% of 480 = ?
a) 1280.75
b) 1084.5
c) 986.25
d) 1175.5
e) None of these
4). 19% of 360 + ? = 45% of 230
a) 29.68
b) 36.5
c) 33.8
d) 38.7
e) 35.1
5). 49 ÷ 0.7 - 4.9 = ?
a) 63.2
b) 65.1
c) 57.8
d) 69.3
e) None of these
Directions (Questions 06-10): In each of the questions, two equations I and II are given. You have to solve both the equations and give answer
a) If a > b
b) If a < b
c) If a ≥ b
d) If a ≤ b
e) If a = b or relationship between ‘a’ and ‘b’ cannot be established.
6). I. a^2 + a – 2 = 0
II. 2b^2 – 15b +25 = 0
7). I. 8a^2 – 22a – 21 = 0
II. b^2 + 14b – 51 = 0
8). I. a^2 + 8a + 16 = 0
II. 3b^2 - 2√(6b) + 2 = 0
9). I. a^2 + 8a + 15 = 0
II. b^2 + 12b + 35 = 0
10). I. a^2 – 9a + 20 = 0
II. b^2 – 12b + 35 = 0
Answers
1).c)
2).e)
3).b)
4).e)
5).b)
6). b)
7). e)
8). b)
9). c)
10). d)
6). I. a2 + a – 2 = 0
Or, a2 + 2a – a – 2 = 0
Or, a(a + 2) – 1(a +2 ) =0
Or, (a – 1) (a + 2) = 0
:. a =1, -2
II. 2b2 – 15b +25 = 0
Or, 2b2 – 10b – 5b +25 = 0
Or, 2b (b – 5) – 5(b – 5) = 0
Or, (b – 5) (2b – 5) = 0
:. b = 5, 5/2
Hence, a < b
7). I. 8a2 – 22a – 21 = 0
Or, 8a2 – 28a +6a – 21 = 0
Or, 4a (2a – 7) + 3(2a - 7) = 0
Or, (4a + 3) (2a – 7) = 0
:. a = - 3/2 , 7/2
II. b2 + 14b – 51 = 0
Or, b2 + 17b – 3b – 51 = 0
Or, b (b + 17) – 3(b +17) = 0
Or, (b – 3) (b + 17) = 0
Or, b= -17, 3
Hence relation cannot be established between a and b.
8). I. a2 + 8a + 16 = 0
Or, a2 + 4a +4a + 16 = 0
Or, (a + 4)2 = 0
Or, a + 4 = 0
:. a= -4
II. 3b2 – 2 √(6b) + 2 = 0
Or, (√3b)2 - 2√(6b) + (√2)2 = 0
Or, (√3b - √2)2 = 0
Or, √3b - √2 = 0
:. B= √2/3
Hence b > a
9). I. a2 + 8a +15 = 0
Or, a2 + 5a + 3a +15 = 0
Or, a(a+5) + 3 (a + 5) = 0
Or, (a +3) (a +5) = 0
:. A = -3, -5
II. b2 + 12b + 35 = 0
Or, b2 + 5b + 7b +35 = 0
Or, b(b + 5) + 7( b+5) = 0
Or, (b + 7) (b + 5) = 0
B = -5 , -7
Hence a ≥ b
10). I. a2 – 9a +20 = 0
Or, a2 – 5a – 4a + 20 = 0
Or, a(a - 5) – 4(a – 5) = 0
Or, (a – 4) (a -5) = 0
:. A=4,5
II. b2 – 12b + 35 = 0
Or, b2 – 5b – 7b +35 = 0
Or, b(b – 5) – 7(b – 5) = 0
Or, (b – 7) (b - 5) = 0
B = 5 , 7
Hence a ≤ b
Dear Bank Aspirants practice Quant Questions for upcoming SBI and other exams. Today's Topic is Time and Distance, very important for SBI clerk point of view.
1). 19.9 × 16.1 × 17.2 =?
a) 5869.01
b) 3021.861
c) 5510.708
d) 4862.961
e) None of these
2). 14 (1/11) + 16 (3/11) + 14 (4/121) + 15 (3/11) =?
a) 59 (54/121)
b) 39 (23/121)
c) 61 (82/99)
d) 107 (59/121)
e) 59 (81/121)
3). 16.5% of 300 + 70.5% of 1400 – 10% of 480 = ?
a) 1280.75
b) 1084.5
c) 986.25
d) 1175.5
e) None of these
4). 19% of 360 + ? = 45% of 230
a) 29.68
b) 36.5
c) 33.8
d) 38.7
e) 35.1
5). 49 ÷ 0.7 - 4.9 = ?
a) 63.2
b) 65.1
c) 57.8
d) 69.3
e) None of these
Directions (Questions 06-10): In each of the questions, two equations I and II are given. You have to solve both the equations and give answer
a) If a > b
b) If a < b
c) If a ≥ b
d) If a ≤ b
e) If a = b or relationship between ‘a’ and ‘b’ cannot be established.
6). I. a^2 + a – 2 = 0
II. 2b^2 – 15b +25 = 0
7). I. 8a^2 – 22a – 21 = 0
II. b^2 + 14b – 51 = 0
8). I. a^2 + 8a + 16 = 0
II. 3b^2 - 2√(6b) + 2 = 0
9). I. a^2 + 8a + 15 = 0
II. b^2 + 12b + 35 = 0
10). I. a^2 – 9a + 20 = 0
II. b^2 – 12b + 35 = 0
Answers
1).c)
2).e)
3).b)
4).e)
5).b)
6). b)
7). e)
8). b)
9). c)
10). d)
6). I. a2 + a – 2 = 0
Or, a2 + 2a – a – 2 = 0
Or, a(a + 2) – 1(a +2 ) =0
Or, (a – 1) (a + 2) = 0
:. a =1, -2
II. 2b2 – 15b +25 = 0
Or, 2b2 – 10b – 5b +25 = 0
Or, 2b (b – 5) – 5(b – 5) = 0
Or, (b – 5) (2b – 5) = 0
:. b = 5, 5/2
Hence, a < b
7). I. 8a2 – 22a – 21 = 0
Or, 8a2 – 28a +6a – 21 = 0
Or, 4a (2a – 7) + 3(2a - 7) = 0
Or, (4a + 3) (2a – 7) = 0
:. a = - 3/2 , 7/2
II. b2 + 14b – 51 = 0
Or, b2 + 17b – 3b – 51 = 0
Or, b (b + 17) – 3(b +17) = 0
Or, (b – 3) (b + 17) = 0
Or, b= -17, 3
Hence relation cannot be established between a and b.
8). I. a2 + 8a + 16 = 0
Or, a2 + 4a +4a + 16 = 0
Or, (a + 4)2 = 0
Or, a + 4 = 0
:. a= -4
II. 3b2 – 2 √(6b) + 2 = 0
Or, (√3b)2 - 2√(6b) + (√2)2 = 0
Or, (√3b - √2)2 = 0
Or, √3b - √2 = 0
:. B= √2/3
Hence b > a
9). I. a2 + 8a +15 = 0
Or, a2 + 5a + 3a +15 = 0
Or, a(a+5) + 3 (a + 5) = 0
Or, (a +3) (a +5) = 0
:. A = -3, -5
II. b2 + 12b + 35 = 0
Or, b2 + 5b + 7b +35 = 0
Or, b(b + 5) + 7( b+5) = 0
Or, (b + 7) (b + 5) = 0
B = -5 , -7
Hence a ≥ b
10). I. a2 – 9a +20 = 0
Or, a2 – 5a – 4a + 20 = 0
Or, a(a - 5) – 4(a – 5) = 0
Or, (a – 4) (a -5) = 0
:. A=4,5
II. b2 – 12b + 35 = 0
Or, b2 – 5b – 7b +35 = 0
Or, b(b – 5) – 7(b – 5) = 0
Or, (b – 7) (b - 5) = 0
B = 5 , 7
Hence a ≤ b